

Patient Name : Ms. SHABANA HAIDER SHAH SULTAN AHMAD Sample UID No. : 4079292

 Age / Gender
 : 63 Y / Female
 Sample Collected On
 : 12-05-2025 19:00

 Patient ID
 : QLD079150
 Registered On
 : 12-05-2025 21:19

 Referred By
 : PESHAWAR
 Reported on
 : 13-05-2025 07:32

Referral Client : CITICARE MEDICAL CENTER External Patient ID : 32773
Emirates ID / Passport No : Print Version : V.1

Department of BIOCHEMISTRY

ELECTROLYTE PANEL

<u>Investigation</u>	<u>Results</u>	<u>Flag</u>	<u>Units</u>	Biological Reference Interval	<u>Method</u>
SODIUM (NA)	141		mmol/L	136-145	ISE (Indirect)
POTASSIUM (K)	3.9		mmol/L	3.5-5.1	ISE (Indirect)
CHLORIDE (CL)	99		mmol/L	98-107	ISE (Indirect)

Interpretation Notes:

Clinical Implication:

- 1. Sodium levels detect changes in water balance rather than sodium balance and sodium levels are used to determine electrolytes, acid base balance, water balance, water intoxication, and dehydration.
- 2.Potassium, electrolytes of intracellular fluid is important to diagnose acid-base and water imbalance and the value varies with circulatory volume.
- 3. Chloride, blood electrolytes is helpful in diagnosing disorders of acid base, water balance and has reciprocal rise (or) fall in response to concentration of other anions.

Interfering factors:

- 1.Drugs like steroids, calcium, fluoride, iron can cause increase in sodium level. Drugs like heparin, laxative, sulphate, diuretics cause decrease in sodium level. High Triglycerides or low protein falsely decrease in sodium level
- 2. Blood drawing procedure affect the values of potassium. Drugs like diuretics and NSAID increase values and excess intake of licorice decrease potassium level.
- 3.Plasma chloride concentration in infants is higher than in children and adults. Drugs may alter chloride levels. Increased values is associated with IV Saline infusion.

Reference -

Manual of Laboratory and Diagnostics -Frances Fischbach Marshall B. Dunning III [9th Edition]

Sample: Serum

- END OF REPORT -

"QLabs compliance with ISO 15189:2022 standards"

Vaishnav Jayamohan Lab Technologist

DHA No. 87250933-002

Dr. Vidhya Mohan Specialist Clinical Pathologist Clinical Pathologist DHA No. 23553203-004 Dr. Dheepa Manoharan Medical Director Specialist Microbiologist DHA No. 00231751-004

Page 1 of 4

Patient Name Sample UID No. : Ms. SHABANA HAIDER SHAH SULTAN AHMAD : EB4079292

Age / Gender : 63 Y / Female $\textbf{Sample Collected On} \hspace{0.1in} : \hspace{0.1in} 12\text{-}05\text{-}2025 \hspace{0.1in} 19\text{:}00$ Patient ID : QLD079150 Registered On : 12-05-2025 21:19 : 13-05-2025 07:32 Referred By Reported on : PESHAWAR

: 32773 **Referral Client** : CITICARE MEDICAL CENTER **External Patient ID** Emirates ID / Passport No : **Print Version** : V.1

Department of HEMATOLOGY

COMPREHENSIVE COMPLETE BLOOD COUNT

<u>Investigation</u>	<u>Results</u>	<u>Flag</u>	<u>Units</u>	Biological Reference Interval	<u>Method</u>			
HEMOGLOBIN	9.5	L	g/dl	12-15	photometric			
RBC COUNT	3.76	L	10^6/uL	3.8-4.8	Electrical Impedance			
HEMATOCRIT	30.4	L	%	37-47	Calculation			
MCV	80.9		fL	78-100	Calculation			
МСН	25.2	L	pg	27-31	Calculation			
мснс	31.1		g/dl	31-35	Calculation			
RDW	18.3	Н	%	9.3-16	Calculation			
RDW-SD	53.4	н	fL	38.9-49	Calculation			
MPV	11.6		fL	8.8-12.5	Calculation			
PLATELET COUNT	150		10^3/uL	150-400	Electrical Impedance			
Comments :								
Presence of giant platelets, ma	-	-	0/		Cala latte			
* PDW	0.1		%	0.01-9.99	Calculation			
	17		/4.00 M/DC	0.1-99.9	Calculation			
* NUCLEATED RBC (NRBC)^	0.1		/100 WBC		Flow Cytometry			
* ABSOLUTE NRBC COUNT^	0		10^3/uL		Calculation			
* EARLY GRANULOCYTE COUNT (EGC)^	0		%		Flow Cytometry			
* ABSOLUTE EGC^	0		10^3/uL		Calculation			
WBC COUNT	4.2		10^3/uL	4-11	Electrical Impedance			
* Neutrophil	65.8		%	40-80	VCS-Method			
* Lymphocyte	15.4	L	%	20-40	VCS-Method			
* Eosinophil	1.8		%	1-8	VCS-Method			
* Monocyte	16.1	Н	%	2-10	VCS-Method			
* Basophil	0.9		%	0-2	VCS-Method			
* ABSOLUTE NEUTROPHIL COUNT	2.8		10^3/uL	1.5-7	Calculation			
* ABSOLUTE LYMPHOCYTE COUNT	0.6	L	10^3/uL	1.5-4	Calculation			
* ABSOLUTE MONOCYTE COUNT	0.7		10^3/uL	0-0.8	Calculation			
* ABSOLUTE EOSINOPHIL COUNT	0.1		10^3/uL	0-0.6	Calculation			
* ABSOLUTE BASOPHIL COUNT	0		10^3/uL	0-0.2	Calculation			
- END OF REPORT -								

- END OF REPORT -

Note:

"The analytes with asterix (*) symbol are non-accredited parameters.". "QLabs compliance with ISO 15189:2022 standards"

Vaishnav Jayamohan Lab Technologist

DHA No. 87250933-002

Dr. Vidhya Mohan **Specialist Clinical Pathologist Clinical Pathologist** DHA No. 23553203-004

Page 2 of 4

Patient Name : Ms. SHABANA HAIDER SHAH SULTAN AHMAD Sample UID No. : EB4079292

 Age / Gender
 : 63 Y / Female
 Sample Collected On
 : 12-05-2025 19:00

 Patient ID
 : QLD079150
 Registered On
 : 12-05-2025 21:19

 Referred By
 : PESHAWAR
 Reported on
 : 13-05-2025 07:32

Referral Client : CITICARE MEDICAL CENTER External Patient ID : 32773
Emirates ID / Passport No : Print Version : V.1

Department of HEMATOLOGY

COMPREHENSIVE COMPLETE BLOOD COUNT

Investigation Results Flag Units Biological Reference Interval Method

Sample: EDTA Whole Blood

- END OF REPORT -

Note:

"The analytes with asterix (*) symbol are non-accredited parameters.".

"QLabs compliance with ISO 15189:2022 standards"

Vaishnav Jayamohan Lab Technologist

DHA No. 87250933-002

Dr. Vidhya Mohan Specialist Clinical Pathologist Clinical Pathologist DHA No. 23553203-004

Page 3 of 4

Patient Name : Ms. SHABANA HAIDER SHAH SULTAN AHMAD Sample UID No. : CP4079292

 Age / Gender
 : 63 Y / Female
 Sample Collected On
 : 12-05-2025 19:00

 Patient ID
 : QLD079150
 Registered On
 : 12-05-2025 21:19

 Referred By
 : PESHAWAR
 Reported on
 : 13-05-2025 07:32

Referral Client : CITICARE MEDICAL CENTER External Patient ID : 32773
Emirates ID / Passport No : Print Version : V.1

Department of HAEMATOLOGY

PROTHROMBIN TIME (PT-INR)

Investigation Sample: Citrated Plasma	Results	<u>Flag</u>	<u>Units</u>	Biological Reference Interval	<u>Method</u>
Prothrombin Time	27.3	н	seconds	9.1-12.1	Photo-Optical
International Normalized Ratio (INR)	2.78	н		0.8-1.2 Therapeutic range: Refer below*	Calculated

Comments :

Rechecked.

Interpretation Notes:

For vitamin K antagonists (eg, warfarin), the prothrombin time (PT/INR) is recommended. Direct oral anticoagulant medications (non-vitamin K) should not be monitored with PT/INR or aPTT because the effect of these tests is not predictable.

*INR THERAPEUTIC RANGE:

Standard intensity warfarin therapeutic range: 2.0 – 3.0

High intensity warfarin therapeutic range: 2.5 - 3.5

Source: Mayo Clinic Laboratories

- END OF REPORT -

"QLabs compliance with ISO 15189:2022 standards"

Vaishnav Jayamohan Lab Technologist

DHA No. 87250933-002

Dr. Vidhya Mohan Specialist Clinical Pathologist Clinical Pathologist DHA No. 23553203-004 Dr. Dheepa Manoharan Medical Director Specialist Microbiologist DHA No. 00231751-004

Page 4 of 4